
Coq, an overview

Damien Pous

EJC, Mai 2013



What is Coq?

I A “proof assistant”
I A “formal proof management system” (from Coq webpage)
I A programming language
I A specification language
I An interactive prover
I A project initiated by Thierry Coquand in 1984, and still under

active development. . .



What is Coq useful for?

I Formally “certify” existing programs/libraries
I Build “certified” software
I Prove or certify mathematical theorems



What Coq is not?

I A fast/distributed/component-based programming language
I A Turing-complete programming language
I A model-checker
I A proof checker
I An automatic prover
I An oracle
I Something easy to work with



What did we learn?

I There is a single language (gallina), for:
I programs/functions,
I specifications,
I proofs.

This is a purely functionnal language.

I There is another language (tactics: Ltac):
I for building/searching proofs,
I that can be used interactively.

There are primitive tactics (intros, apply, induction),
and rather complex ones (tauto, ring).



Principles - Curry-Howard correspondance

“proofs are programs”

p : (A → B) → (B → C ) → A → C
f 7→ g 7→ x 7→ g(f (x))

property P type T (interface)
proof p term t (implementation)

proof-checking type-checking
p ` P ` t : T



Principles - Gallina

I Checking a proof is easy: this is just type-checking. . .
. . . but we need to trust the type-checker.

I Gallina is a quite small language,
I for which type-checking is (easily) decidable;
I and still remains really expressive.

I It relies on a strong theoretical background:
I the “Calculus of Inductive Constructions”,
I which comes from the λ-calculus.



Principles - Ltac

I Sequences of tactics do not constitute proofs:
tactics produce gallina terms that can be checked by Coq.

I We don’t need to trust tactics: any way to obtain a proof is
valid since the proof will be checked.

I Proofs can actually be searched by other means than Ltac.



Prove/certify mathematical theorems

I We just proved some elementary theorems,
more complex ones can be proved too!

I Two major examples:
I Georges Gonthier et al.’s proof of four-colours theorem;
I Poplmark challenge.
I Feit-Thompson’s theorem



Certify existing software

I Given an existing program, we might want to prove:
I the absence of runtime errors,
I termination,
I behavioural correctness.

I Problem: sometimes, programs are not written in Coq. . .

I A solution: Why and Krakatoa/Caduceus tools.

(see Jean-Christophe Filliâtre’ gallery of certified programs:
http://why.lri.fr/examples/)

http://why.lri.fr/examples/




Build certified software

I If we have to write a new program, why not writing it and
certifying it within Coq?

I Not so realistic, Coq is definitely too slow:
I it’s interpreted;
I integers, floats. . . are not ‘native’.

I However, Coq programs can be extracted to other languages:
OCaml, Haskell and Scheme.

I This is how Xavier Leroy obtained its certified compiler for C:
http://compcert.inria.fr/

http://compcert.inria.fr/


More about the programming language

I Section mechanism:
I allows one to work under hypothesis,
I easy way to define polymorphic objects.

I Module system, functors:
I makes it possible to structure code and proofs,
I facilitate code reuse.

I Rather large standard library (functions/theorems):
I N, Z, Q, R ;
I logic, relations;
I lists, finite sets. . .



More about the programming language - bis

Dependent types: types may contain (depend on) terms.
I In OCaml: list is a polymorphic type constructor

(list int, list float, list (list int)), that is, a
function from types to types: list: Type→Type.

I In Coq we can also define functions from terms to types; for
example the function vect: nat→Type, that associate to
each natural number, the set of vectors of that length.

I For type-checking to remain decidable, we need strong
normalization: otherwise, how to decide that
vect (f 0) = vect (f 1)
for an arbitrary function f: nat→nat ?



More about the programming language - ter

Inductive constructions: how datatypes and predicates are defined.
I Inductive nat: Set :=

| O: nat
| S: nat -> nat.

I Inductive vect (X: Set): nat -> Set :=
| vnil: vect X O
| vcons: forall n, X -> vect X n -> vect X (S n).

I Inductive le: nat -> nat -> Prop :=
| le_n: forall n, le n n
| le_S: forall m n, le m n -> le m (S n).



More about tactics

We have seen some tactics, either quite simple (apply), or quite
impressive (ring).

I There actually is a tactic language, that makes it possible to
build complex tactics from simpler ones;

I let’s play with it. . .
I But we can also use Coq itself to resolve some problems!

I this is called reflection;
I let’s give an example. . .

I Last, we can use any external tool in order to find a proof:
I Coq can communicate to the outside world through XML

documents;
I you can use your favorite language to hack a particular tactic.



Sum-up

I Coq is a programming language:
I purely functionnal;
I interpreted (rather slow), but programs can be extracted to

fast, compiled, languages;
I one real constraint: all programs terminate.

I Coq is an expressive specification language:
I any mathematical property can be stated.

I Coq certifies proofs by a simple type-checking algorithm.
I Coq is a proof assistant:

I the interactive mode allows us to prove a theorem
progressively, by using tactics;

I tactics can be more or less elaborated, and can be defined by
the user.



Related software

I Why, Krakatoa/Caduceus,
I for the analysis of Java and C programs.

I Isabelle/HOL
I Larry Paulson - U. of Cambridge

& Tobias Nipkow - U. of München
I Twelf

I Karl Crary & Robert Harper - Carnegie Mellon U., USA



History / people

I 1984: Thierry Coquand and Gérard Huet implement the
Calculus of Constructions (INRIA-Rocquencourt)

I 1991: Christine Paulin extended it to the Calculus of Inductive
Constructions

I 2005: Georges Gonthier et al. use Coq to prove the 4-colours
theorem

I 2008: Xavier Leroy et al. build a certified compiler for C
I 2012: Feit-Thompson: classification of finite groups of odd

order
I Other developpers: Chet Murthy, Jean-Christophe Filliâtre,

Bruno Barras, Hugo Herbelin, Assia Mahboubi and more than
thirty people. . .
TypiCal (formerly LogiCal), ProVal and Marelle projects


	Quick tour of syntax, principles and theory
	Three kinds of use
	Prove/certify mathematical theorems
	Certify existing software
	Build certified software

	More details
	About the programming language
	About tactics

	Conclusions

