
A Little Journey in the Pharo
Object Model
Stéphane Ducasse
http://www.pharo.org

http://www.pharo.org
http://www.pharo.org

A pure and minimal object model

Less is more!

No constructors, no static methods, no operators

No type declaration, no primitive types,

No interfaces, no need for factory

No packages/private/protected modifiers

No parametrized types

No boxing/unboxing

Still powerful

Everything is an object

Objects are instances of
Classes

(10@200)

Objects are instances of
Classes

(10@200) class

Objects are instances of
Classes

(10@200) class

Point

Objects are instances of
Classes

Classes are objects too

Point selectors

Classes are objects too

Point selectors

> an IdentitySet(#eightNeighbors #+ #isZero
#sortsBefore: #degrees #printOn: #sideOf:
#fourNeighbors #hash #roundUpTo: #min: #min:max:
#max #adaptToCollection:andSend: #quadrantOf:
#crossProduct: #= #nearestPointOnLineFrom:to:
#bitShiftPoint: #* #guarded #insideTriangle:with:with:
#grid: #truncateTo: #y #setR:degrees: #normal

Classes are objects too

Point instVarNames

Classes are objects too

Point instVarNames

 >#('x' 'y')

Classes are objects too

Methods are public

Methods are all late-bound

Instance variables are
protected

Single Inheritance

Object subclass: #Point

	 instanceVariableNames: 'x y'

	 classVariableNames: ''

	 category: 'Graphics-Primitives'

Single Inheritance

Messages + Objects

Object

Node

accept:

name

sendt:

node1

msg

The key to everything

Classes are objects too

Point class

Classes are objects too

Point class

>Point class

Classes are objects too

Point class

>Point class

“Point class” is an anonymous class with only one
instance: Point

Classes are objects too

Class Parallel Inheritance
Node class

new
withName: aString

instance of

Node

name
accept: aPacket
send: aPacket

Workstation

originate: aPacket
accept: aPacket

aWorkstation (BigMac)

Workstation

class

instance of

Lookup and Class Methods

About the Buttons

Class methods are plain late
bound methods as any
methods!

Package extensions

A method can be defined in a class that
is packaged in another package!
Powerful to build layers

Defined in the Dice package
Integer>>D20
 ^ self D: 20

Integer>>D: anInteger
 | h |
 h := DiceHandle new
 self timesRepeat:
 [h addDice: (Dice faces: anInteger)].
 ^ h

2 D20: two dice of 20 faces

Summary
Everything is an object

Single inheritance, public methods,
protected attributes

One single model

Classes are simply objects too

A class is instance of another class

One unique method lookup, look in the
class of the receiver

