
Pharo:
A Little Journey in the
Smalltalk Syntax
S. Ducasse
http://www.pharo.org

Thursday, May 16, 13

http://www.pharo-project.org
http://www.pharo-project.org

Sensus HighOctane

Thursday, May 16, 13

Show you that this is simple
a piece of cake

Thursday, May 16, 13

a first
appetizer

Thursday, May 16, 13

Thursday, May 16, 13

Yeah!

Smalltalk is a dynamically
typed language

Thursday, May 16, 13

ArrayList<String> strings

 = new ArrayList<String>();

 strings := ArrayList new.

Thursday, May 16, 13

Thread regThread = new Thread(

 new Runnable() {

 public void run() {

 this.doSomething();} });

 regThread.start();

[self doSomething] fork.

Thursday, May 16, 13

Smalltalk = Objects +
Messages + (...)

Thursday, May 16, 13

Roadmap
Fun with numbers

Thursday, May 16, 13

1 class

Thursday, May 16, 13

1 class

>SmallInteger

Thursday, May 16, 13

1 class maxVal

Thursday, May 16, 13

1 class maxVal

>1073741823

Thursday, May 16, 13

1 class maxVal + 1

Thursday, May 16, 13

1 class maxVal + 1

>1073741824

Thursday, May 16, 13

(1 class maxVal + 1) class

Thursday, May 16, 13

(1 class maxVal + 1) class

>LargePositiveInteger

Thursday, May 16, 13

(1/3) + (2/3)

Thursday, May 16, 13

(1/3) + (2/3)

>1

Thursday, May 16, 13

2/3 + 1

Thursday, May 16, 13

2/3 + 1

> 5/3

Thursday, May 16, 13

1000 factorial

Thursday, May 16, 13

1000 factorial

402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969
404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732
519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647
849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396
668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308
431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131
412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359
928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475
847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750
137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545
257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893
964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581
746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226
143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208
164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301
435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023
136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383
814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889
729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291
123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290
153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248
757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516
461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595
741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939
410970027753472000

Thursday, May 16, 13

1000 factorial / 999 factorial

Thursday, May 16, 13

1000 factorial / 999 factorial

> 1000

Thursday, May 16, 13

10 @ 100

Thursday, May 16, 13

10 @ 100

(10 @ 100) x

Thursday, May 16, 13

10 @ 100

(10 @ 100) x

> 10

Thursday, May 16, 13

10 @ 100

(10 @ 100) x

> 10

(10 @ 100) y

Thursday, May 16, 13

10 @ 100

(10 @ 100) x

> 10

(10 @ 100) y

>100

Thursday, May 16, 13

Points!

Points are created using @

Thursday, May 16, 13

Puzzle

(10@100) + (20@100)

Thursday, May 16, 13

Puzzle

(10@100) + (20@100)

>30@200

Thursday, May 16, 13

Puzzle

(10@100) + (20@100)

>30@200

Thursday, May 16, 13

Thursday, May 16, 13

Roadmap
Fun with characters,
strings, arrays

Thursday, May 16, 13

$C $h $a $r $a $c $t $e $r

$F, $Q $U $E $N $T $i $N

Characters? :)

Thursday, May 16, 13

space tab cr ... ?!

Character space

Character tab

Character cr

Thursday, May 16, 13

‘Strings’

‘Tiramisu’

Thursday, May 16, 13

Characters

12 printString

> ’12’

Thursday, May 16, 13

Strings are collections of
chars

‘Tiramisu’ at: 1

Thursday, May 16, 13

Strings are collections of
chars

‘Tiramisu’ at: 1

> $T

Thursday, May 16, 13

A program! -- finding the last
char

Thursday, May 16, 13

A program!

| str |

Thursday, May 16, 13

A program!

| str | local variable

Thursday, May 16, 13

A program!

| str | local variable

str := ‘Tiramisu’.

Thursday, May 16, 13

A program!

| str | local variable

str := ‘Tiramisu’. assignment

Thursday, May 16, 13

A program!

| str | local variable

str := ‘Tiramisu’. assignment

str at: str length

Thursday, May 16, 13

A program!

| str | local variable

str := ‘Tiramisu’. assignment

str at: str length message send

> $u

Thursday, May 16, 13

double ‘ to get one

‘L’’Idiot’

> one string

Thursday, May 16, 13

For concatenation use ,

‘Calvin’ , ‘ & ‘, ‘Hobbes’

Thursday, May 16, 13

For concatenation use ,

‘Calvin’ , ‘ & ‘, ‘Hobbes’

> ‘Calvin & Hobbes’

Thursday, May 16, 13

For concatenation use ,

‘Calvin’ , ‘ & ‘, ‘Hobbes’

> ‘Calvin & Hobbes’

Thursday, May 16, 13

Symbols: #Pharo

#Something is a symbol

Symbol is a unique string in the system

#Something == #Something

> true

Thursday, May 16, 13

“Comment”

“what a fun language lecture.

I really liked the desserts”

Thursday, May 16, 13

#(Array)

#(‘Calvin’ ‘hates’ ‘Suzie’)

Thursday, May 16, 13

#(Array)

#(‘Calvin’ ‘hates’ ‘Suzie’) size

Thursday, May 16, 13

#(Array)

#(‘Calvin’ ‘hates’ ‘Suzie’) size

> 3

Thursday, May 16, 13

First element starts at 1

#(‘Calvin’ ‘hates’ ‘Suzie’) at: 2

Thursday, May 16, 13

First element starts at 1

#(‘Calvin’ ‘hates’ ‘Suzie’) at: 2

> ‘hates’

Thursday, May 16, 13

at: to access, at:put: to set

#(‘Calvin’ ‘hates’ ‘Suzie’) at: 2 put: ‘loves’

Thursday, May 16, 13

#(Array)

#(‘Calvin’ ‘hates’ ‘Suzie’) at: 2 put: ‘loves’

> #(‘Calvin’ ‘loves’ ‘Suzie’)

Thursday, May 16, 13

Roadmap
Fun with class
definitions

Thursday, May 16, 13

A class definition!

Superclass subclass: #Class

	 instanceVariableNames: 'a b c'

...

	 category: 'Package name'

Thursday, May 16, 13

A class definition!

Object subclass: #Point

	 instanceVariableNames: 'x y'

	 classVariableNames: ''

	 poolDictionaries: ''

	 category: 'Graphics-Primitives'

Thursday, May 16, 13

A class definition!

Object subclass: #Point

	 instanceVariableNames: 'x y'

	 classVariableNames: ''

	 poolDictionaries: ''

	 category: 'Graphics-Primitives'

Thursday, May 16, 13

Roadmap
Fun with methods

Thursday, May 16, 13

On Integer

asComplex

"Answer a Complex number that represents value of
the the receiver."

^ Complex real: self imaginary: 0

Thursday, May 16, 13

On Boolean

xor: aBoolean

"Exclusive OR. Answer true if the receiver is not
equivalent to aBoolean."

^(self == aBoolean) not

Thursday, May 16, 13

Summary

self, super

can access instance variables

can define local variable | ... |

Do not need to define argument types

^ to return

Thursday, May 16, 13

Roadmap
Fun with unary
messages

Thursday, May 16, 13

1 class

Thursday, May 16, 13

1 class

> SmallInteger

Thursday, May 16, 13

false not

Thursday, May 16, 13

false not

> true

Thursday, May 16, 13

Date today

Thursday, May 16, 13

Date today

> 24 May 2009

Thursday, May 16, 13

Time now

Thursday, May 16, 13

Time now

> 6:50:13 pm

Thursday, May 16, 13

Float pi

Thursday, May 16, 13

Float pi

> 3.141592653589793

Thursday, May 16, 13

We sent messages to objects or classes!

1 class

Date today

Thursday, May 16, 13

We sent messages to objects or classes!

1 class

Date today

Thursday, May 16, 13

Roadmap
Fun with binary
messages

Thursday, May 16, 13

aReceiver aSelector
anArgument

Used for arithmetic, comparison and logical operations

One or two characters taken from:

+ - / \ * ~ < > = @ % | & ! ? ,

Thursday, May 16, 13

1 + 2

Thursday, May 16, 13

1 + 2

>3

Thursday, May 16, 13

2 => 3

Thursday, May 16, 13

2 => 3

> false

Thursday, May 16, 13

10 @ 200

Thursday, May 16, 13

‘Black chocolate’ , ‘ is good’

Thursday, May 16, 13

Roadmap
Fun with keyword-
based messages

Thursday, May 16, 13

Keyword-based messages

ar := #(‘Calvin’ ‘hates’ ‘Suzie’).

arr at: 2 put: ‘loves’

Thursday, May 16, 13

Keyword-based messages
ar := #(‘Calvin’ ‘hates’ ‘Suzie’).

arr at: 2 put: ‘loves’

somehow like arr.atput(2,‘loves’)

Thursday, May 16, 13

From Java to Smalltalk

postman.send(mail,recipient);

Thursday, May 16, 13

Removing

postman.send(mail,recipient);

Thursday, May 16, 13

Removing unnecessary

postman send mail recipient

Thursday, May 16, 13

But without losing
information

postman send mail to recipient

Thursday, May 16, 13

postman send: mail to: recipient

postman.send(mail,recipient);

Thursday, May 16, 13

postman send: mail to: recipient

#send:to: is the message selector

postman.send(mail,recipient);

Thursday, May 16, 13

10@20 setX: 2

Thursday, May 16, 13

10@20 setX: 2

> 2@20

Thursday, May 16, 13

12 between: 10 and: 20

Thursday, May 16, 13

12 between: 10 and: 20

> true

Thursday, May 16, 13

receiver

 keyword1: argument1

keyword2: argument2

equivalent to

receiver.keyword1keyword2(argument1, argument2)

Thursday, May 16, 13

receiver

 keyword1: argument1

keyword2: argument2

equivalent to

receiver.keyword1keyword2(argument1, argument2)

Thursday, May 16, 13

Roadmap
Doing/Printing

Thursday, May 16, 13

Browser newOnClass: Point

Thursday, May 16, 13

Browser newOnClass: Point

Thursday, May 16, 13

Yes there is a difference between

doing (side effect)

and returning an object

Thursday, May 16, 13

Browser newOnClass: Point

> a Browser

Thursday, May 16, 13

Doing and do not care of the returned result

Browser newOnClass: Point

Thursday, May 16, 13

Doing and really want to see the result!

10@20 setX: 2

> 2@20

Thursday, May 16, 13

Doing vs printing (doing + print result)

Thursday, May 16, 13

Doing vs printing (doing + print result)

Thursday, May 16, 13

Roadmap
Messages messages
and messages again

Thursday, May 16, 13

Yes there are only messages

 unary

 binary

 keywords

Composition: from left to
right!

Thursday, May 16, 13

Composition: from left to
right!

69 class inspect

69 class superclass superclass inspect

Thursday, May 16, 13

Unary> Binary> Keywords

Precedence

Thursday, May 16, 13

2 + 3 squared

Precedence

Thursday, May 16, 13

2 + 3 squared

> 2 + 9

Precedence

Thursday, May 16, 13

2 + 3 squared

> 2 + 9

> 11

Precedence

Thursday, May 16, 13

Color gray - Color white = Color black

Thursday, May 16, 13

Color gray - Color white = Color black

> aColor = Color black

Thursday, May 16, 13

Color gray - Color white = Color black

> aColor = Color black

> true

Thursday, May 16, 13

2 raisedTo: 3 + 2

Thursday, May 16, 13

2 raisedTo: 3 + 2

> 2 raisedTo: 5

Thursday, May 16, 13

2 raisedTo: 3 + 2

> 2 raisedTo: 5

> 32

Thursday, May 16, 13

1/3 + 2/3

	 	

No mathematical
precedence

Thursday, May 16, 13

1/3 + 2/3

>7/3 /3

	 	

No mathematical
precedence

Thursday, May 16, 13

Parenthesized takes precedence!

(Msg) > Unary> Binary>
Keywords

Thursday, May 16, 13

(0@0 extent: 100@100) bottomRight

Thursday, May 16, 13

(0@0 extent: 100@100) bottomRight

> (aPoint extent: anotherPoint) bottomRight

Thursday, May 16, 13

(0@0 extent: 100@100) bottomRight

> (aPoint extent: anotherPoint) bottomRight

> aRectangle bottomRight

Thursday, May 16, 13

(0@0 extent: 100@100) bottomRight

> (aPoint extent: anotherPoint) bottomRight

> aRectangle bottomRight

> 100@100

Thursday, May 16, 13

0@0 extent: 100@100 bottomRight

Thursday, May 16, 13

0@0 extent: 100@100 bottomRight

> Message not understood

> 100 does not understand bottomRight

Thursday, May 16, 13

3 + 2 * 10

No mathematical
precedence

Thursday, May 16, 13

3 + 2 * 10

> 5 * 10

No mathematical
precedence

Thursday, May 16, 13

3 + 2 * 10

> 5 * 10

> 50

argh!

No mathematical
precedence

Thursday, May 16, 13

3 + (2 * 10)

	 	

No mathematical
precedence

Thursday, May 16, 13

3 + (2 * 10)

> 3 + 20

	 	

No mathematical
precedence

Thursday, May 16, 13

3 + (2 * 10)

> 3 + 20

> 23

	 	

No mathematical
precedence

Thursday, May 16, 13

1/3 + 2/3	

> 7/3 /3

No mathematical
precedence

Thursday, May 16, 13

1/3 + 2/3	

> (7/3) /3

> 7/9

No mathematical
precedence

Thursday, May 16, 13

(1/3) + (2/3)	 	

No mathematical
precedence

Thursday, May 16, 13

(1/3) + (2/3)

> 1		

No mathematical
precedence

Thursday, May 16, 13

(Msg) > Unary > Binary > Keywords	 	

from left to right

No mathematical precedence

Only Messages

Thursday, May 16, 13

(Msg) > Unary > Binary > Keywords	 	

from left to right

No mathematical precedence

Only Messages

Thursday, May 16, 13

Roadmap
Fun with blocks

Thursday, May 16, 13

Function definition

fct(x) = x * x + x

Thursday, May 16, 13

Function Application

fct (2) = 6

fct (20) = 420

Thursday, May 16, 13

Function definition

fct(x) = x * x + x

|fct|

fct:= [:x | x * x + x].

Thursday, May 16, 13

Function Application

fct (2) = 6

fct (20) = 420

fct value: 2

> 6

fct value: 20

Thursday, May 16, 13

Other examples

[2 + 3 + 4 + 5] value

[:x | x + 3 + 4 + 5] value: 2

[:x :y | x + y + 4 + 5] value: 2 value: 3

Thursday, May 16, 13

Block

anonymous method

[:variable1 :variable2 |
		 | tmp |
		 expression1.
		 ...variable1 ...]

value: ...

Thursday, May 16, 13

Block
anonymous method

Really really cool!

Can be passed to methods, stored in instance
variables

[:variable1 :variable2 |
		 | tmp |
		 expression1.
		 ...variable1 ...]

Thursday, May 16, 13

Roadmap
Fun with conditional

Thursday, May 16, 13

Example

3 > 0
 ifTrue:['positive']
 ifFalse:['negative']

Thursday, May 16, 13

Example

3 > 0
 ifTrue:['positive']
 ifFalse:['negative']

> ‘positive’

Thursday, May 16, 13

Yes ifTrue:ifFalse: is a
message!

Weather isRaining

 ifTrue: [self takeMyUmbrella]

 ifFalse: [self takeMySunglasses]

ifTrue:ifFalse is sent to an object: a boolean!

Thursday, May 16, 13

Booleans

& | not

or: and: (lazy)

xor:

ifTrue:ifFalse:

ifFalse:ifTrue:

...

Thursday, May 16, 13

Yes! ifTrue:ifFalse: is a message send to a Boolean.

But optimized by the compiler :)

Thursday, May 16, 13

10 timesRepeat: [Transcript show:
'hello'; cr]

Thursday, May 16, 13

10 timesRepeat: [Transcript show:
'hello'; cr]

Thursday, May 16, 13

[x<y] whileTrue: [x := x + 3]

Thursday, May 16, 13

aBlockTest whileTrue

aBlockTest whileFalse

aBlockTest whileTrue: aBlockBody

aBlockTest whileFalse: aBlockBody

anInteger timesRepeat: aBlockBody

Thursday, May 16, 13

Confused with () and [] ?

Thursday, May 16, 13

Only put [] when you do not the number of times
something may be executed

 (x isBlue) ifTrue: [x schroumph]

 10 timesRepeat: [self shout]

Thursday, May 16, 13

Conditions are messages sent to boolean

(x isBlue) ifTrue: []

Thursday, May 16, 13

Roadmap
Fun with loops

Thursday, May 16, 13

1 to: 100 do:

 [:i | Transcript show: i ; space]

Thursday, May 16, 13

1 to: 100 do:

 [:i | Transcript show: i ; space]

Thursday, May 16, 13

1 to: 100 by: 3 do:

 [:i | Transcript show: i ; space]

Thursday, May 16, 13

1 to: 100 by: 3 do:

 [:i | Transcript show: i ; space]

Thursday, May 16, 13

So yes there are real loops in Smalltalk!

to:do:

to:by:do:

are just messages send to integers

Thursday, May 16, 13

So yes there are real loops in Smalltalk!

to:do:

to:by:do:

are just messages send to integers

Thursday, May 16, 13

Roadmap
Fun with iterators

Thursday, May 16, 13

ArrayList<String> strings
 = new ArrayList<String>();
 for(Person person: persons)
 strings.add(person.name());

strings :=
persons collect [:person | person name].

Thursday, May 16, 13

#(2 -3 4 -35 4) collect: [:each| each abs]

Thursday, May 16, 13

#(2 -3 4 -35 4) collect: [:each| each abs]

> #(2 3 4 35 4)

Thursday, May 16, 13

#(15 10 19 68) collect: [:i | i odd]

Thursday, May 16, 13

#(15 10 19 68) collect: [:i | i odd]

> #(true false true false)

Thursday, May 16, 13

#(15 10 19 68) collect: [:i | i odd]

We can also do it that way!

|result|
aCol := #(2 -3 4 -35 4).
result := aCol species new: aCol size.
1 to: aCollection size do:
	 [:each | result at: each put: (aCol at: each) odd].
result

Thursday, May 16, 13

 #(15 10 19 68) do:

 [:i | Transcript show: i ; cr]

Thursday, May 16, 13

 #(15 10 19 68) do:

 [:i | Transcript show: i ; cr]

Thursday, May 16, 13

#(1 2 3)

 with: #(10 20 30)

 do: [:x :y| Transcript show: (y ** x) ; cr]

Thursday, May 16, 13

#(1 2 3)

 with: #(10 20 30)

 do: [:x :y| Transcript show: (y ** x) ; cr]

Thursday, May 16, 13

How do: is implemented?

Thursday, May 16, 13

How do: is implemented?

SequenceableCollection>>do: aBlock
"Evaluate aBlock with each of the receiver's elements as the
argument."

1 to: self size do: [:i | aBlock value: (self at: i)]

Thursday, May 16, 13

#(15 10 19 68) select: [:i|i odd]

#(15 10 19 68) reject: [:i|i odd]

#(12 10 19 68 21) detect: [:i|i odd]

#(12 10 12 68) detect: [:i|i odd] ifNone:[1]

Thursday, May 16, 13

#(15 10 19 68) select: [:i|i odd]

> #(15 19)

#(15 10 19 68) reject: [:i|i odd]

#(12 10 19 68 21) detect: [:i|i odd]

#(12 10 12 68) detect: [:i|i odd] ifNone:[1]

Thursday, May 16, 13

#(15 10 19 68) select: [:i|i odd]

> #(15 19)

#(15 10 19 68) reject: [:i|i odd]

> #(10 68)	

#(12 10 19 68 21) detect: [:i|i odd]

#(12 10 12 68) detect: [:i|i odd] ifNone:[1]

Thursday, May 16, 13

#(15 10 19 68) select: [:i|i odd]

> #(15 19)

#(15 10 19 68) reject: [:i|i odd]

> #(10 68)	

#(12 10 19 68 21) detect: [:i|i odd]

> 19

#(12 10 12 68) detect: [:i|i odd] ifNone:[1]

Thursday, May 16, 13

#(15 10 19 68) select: [:i|i odd]

> #(15 19)

#(15 10 19 68) reject: [:i|i odd]

> #(10 68)	

#(12 10 19 68 21) detect: [:i|i odd]

> 19

#(12 10 12 68) detect: [:i|i odd] ifNone:[1]

> 1
Thursday, May 16, 13

Iterators are your best friends

 compact

 nice abstraction

 Just messages sent to collections

Thursday, May 16, 13

Iterators are your best friends

 compact

 nice abstraction

 Just messages sent to collections

Thursday, May 16, 13

How do you define the method that does that?

 #() -> ‘’

 #(a) ->’a’

 #(a b c) -> ‘a, b, c’

Thursday, May 16, 13

#(a b c)

do: [:each | Transcript show: each printString]

separatedBy: [Transcript show: ‘,’]

Thursday, May 16, 13

#(a b c)

do: [:each | Transcript show: each printString]

separatedBy: [Transcript show: ‘,’]

Thursday, May 16, 13

Roadmap
Cascading

Thursday, May 16, 13

Messages Sequence
		 	 message1 .

		 	 message2 .

		 	 message3

	. is a separator, not a terminator

	

		 | macNode pcNode node1 printerNode |

		 macNode := Workstation withName: #mac.

Thursday, May 16, 13

Multiple messages to an
objects ;

To send multiple messages to the same object

	 	 Transcript show: 1 printString.

	 	 Transcript cr

	 	

is equivalent to:

Thursday, May 16, 13

Thursday, May 16, 13

http://www.pharo.org

Thursday, May 16, 13

http://www.pharo.org
http://www.pharo.org

