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Sensus HighOctane

Thursday, May 16, 13



Show you that this is simple
a piece of cake
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a first 
appetizer
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Yeah!

Smalltalk is a dynamically 
typed language
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ArrayList<String> strings

                  = new ArrayList<String>();

    strings := ArrayList new.
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Thread regThread = new Thread(

       new Runnable() {

         public void run() {

                this.doSomething();} });

    regThread.start();

[self doSomething] fork.
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Smalltalk = Objects + 
Messages + (...) 
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Roadmap
Fun with numbers
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1 class 
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1 class 

>SmallInteger
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1 class maxVal
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1 class maxVal

>1073741823
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1 class maxVal + 1

Thursday, May 16, 13



1 class maxVal + 1

>1073741824
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(1 class maxVal + 1) class
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(1 class maxVal + 1) class

>LargePositiveInteger
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(1/3) + (2/3)
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(1/3) + (2/3)

>1
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2/3 + 1
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2/3 + 1

> 5/3
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1000 factorial
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1000 factorial

 
402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969
404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732
519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647
849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396
668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308
431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131
412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359
928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475
847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750
137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545
257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893
964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581
746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226
143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208
164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301
435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023
136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383
814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889
729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291
123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290
153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248
757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516
461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595
741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939
410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000
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1000 factorial / 999 factorial
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1000 factorial / 999 factorial

> 1000
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10 @ 100
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10 @ 100

(10 @ 100) x
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10 @ 100

(10 @ 100) x

> 10
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10 @ 100

(10 @ 100) x

> 10

(10 @ 100) y
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10 @ 100

(10 @ 100) x

> 10

(10 @ 100) y

>100
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Points!

Points are created using @
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Puzzle

(10@100) + (20@100) 
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Puzzle

(10@100) + (20@100) 

>30@200
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Puzzle

(10@100) + (20@100) 

>30@200
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Roadmap
Fun with characters, 
strings, arrays
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$C $h $a $r $a $c $t $e $r

$F, $Q $U $E $N $T $i $N

Characters? :)
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space tab cr ... ?!

Character space

Character tab

Character cr
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‘Strings’

‘Tiramisu’
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Characters

12 printString 

> ’12’
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Strings are collections of 
chars

‘Tiramisu’ at: 1
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Strings are collections of 
chars

‘Tiramisu’ at: 1

> $T
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A program! -- finding the last 
char
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A program!

| str |                                             
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A program!

| str |                                             local variable
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A program!

| str |                                             local variable

str := ‘Tiramisu’.                             
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A program!

| str |                                             local variable

str := ‘Tiramisu’.                              assignment
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A program!

| str |                                             local variable

str := ‘Tiramisu’.                              assignment

str at: str length                              
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A program!

| str |                                             local variable

str := ‘Tiramisu’.                              assignment

str at: str length                              message send

> $u
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double ‘ to get one

‘L’’Idiot’

> one string
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For concatenation use ,

‘Calvin’ , ‘ & ‘, ‘Hobbes’
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For concatenation use ,

‘Calvin’ , ‘ & ‘, ‘Hobbes’

> ‘Calvin & Hobbes’

Thursday, May 16, 13



For concatenation use ,

‘Calvin’ , ‘ & ‘, ‘Hobbes’

> ‘Calvin & Hobbes’
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Symbols:  #Pharo

#Something is a symbol

Symbol is a unique string in the system

#Something == #Something 

> true
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“Comment”

“what a fun language lecture.

I really liked the desserts”
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#(Array)

#(‘Calvin’ ‘hates’ ‘Suzie’)
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#(Array)

#(‘Calvin’ ‘hates’ ‘Suzie’) size

Thursday, May 16, 13



#(Array)

#(‘Calvin’ ‘hates’ ‘Suzie’) size

> 3
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First element starts at 1

#(‘Calvin’ ‘hates’ ‘Suzie’) at: 2
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First element starts at 1

#(‘Calvin’ ‘hates’ ‘Suzie’) at: 2

> ‘hates’
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at: to access, at:put: to set

#(‘Calvin’ ‘hates’ ‘Suzie’) at: 2 put: ‘loves’
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#(Array)

#(‘Calvin’ ‘hates’ ‘Suzie’) at: 2 put: ‘loves’

> #(‘Calvin’ ‘loves’ ‘Suzie’) 
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Roadmap
Fun with class 
definitions
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A class definition!

Superclass subclass: #Class

	 instanceVariableNames: 'a b c'

...

	 category: 'Package name'
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A class definition!

Object subclass: #Point

	 instanceVariableNames: 'x y'

	 classVariableNames: ''

	 poolDictionaries: ''

	 category: 'Graphics-Primitives'
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A class definition!

Object subclass: #Point

	 instanceVariableNames: 'x y'

	 classVariableNames: ''

	 poolDictionaries: ''

	 category: 'Graphics-Primitives'
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Roadmap
Fun with methods
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On Integer

asComplex

"Answer a Complex number that represents value of 
the the receiver."

^ Complex real: self imaginary: 0
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On Boolean

xor: aBoolean 

"Exclusive OR. Answer true if the receiver is not 
equivalent to aBoolean."

^(self == aBoolean) not
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Summary

self, super

can access instance variables

can define local variable | ... |

Do not need to define argument types

^ to return 
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Roadmap
Fun with unary 
messages
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1 class
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1 class

> SmallInteger
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false not
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false not

> true
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Date today
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Date today

> 24 May 2009
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Time now
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Time now

> 6:50:13 pm
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Float pi
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Float pi

>  3.141592653589793
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We sent messages to objects or classes!

1 class

Date today
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We sent messages to objects or classes!

1 class

Date today
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Roadmap
Fun with binary 
messages
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aReceiver aSelector 
anArgument 

Used for arithmetic, comparison and logical operations

One or two characters taken from: 

+ - / \ * ~ < > = @ % | & ! ? ,

Thursday, May 16, 13



1 + 2
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1 + 2

>3

Thursday, May 16, 13



2 => 3
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2 => 3

> false
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10 @ 200
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‘Black chocolate’ , ‘ is good’
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Roadmap
Fun with keyword-
based messages
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Keyword-based messages

ar := #(‘Calvin’ ‘hates’ ‘Suzie’).

arr at: 2 put: ‘loves’
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Keyword-based messages
ar := #(‘Calvin’ ‘hates’ ‘Suzie’).

arr at: 2 put: ‘loves’

somehow like arr.atput(2,‘loves’)
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From Java to Smalltalk

postman.send(mail,recipient);
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Removing

postman.send(mail,recipient);
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Removing unnecessary

postman send mail recipient
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But without losing 
information

postman send mail to recipient
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postman send: mail to: recipient

postman.send(mail,recipient);
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postman send: mail to: recipient

#send:to: is the message selector

postman.send(mail,recipient);
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10@20 setX: 2
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10@20 setX: 2

> 2@20
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12 between: 10 and: 20
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12 between: 10 and: 20

> true
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receiver

    keyword1: argument1 

keyword2: argument2

equivalent to 

receiver.keyword1keyword2(argument1, argument2) 
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receiver

    keyword1: argument1 

keyword2: argument2

equivalent to 

receiver.keyword1keyword2(argument1, argument2) 
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Roadmap
Doing/Printing
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Browser newOnClass: Point
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Browser newOnClass: Point
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Yes there is a difference between 

doing (side effect)

and returning an object
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Browser newOnClass: Point

> a Browser
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Doing and do not care of the returned result

Browser newOnClass: Point
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Doing and really want to see the result!

10@20 setX: 2

> 2@20
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Doing vs printing (doing + print result)

Thursday, May 16, 13



Doing vs printing (doing + print result)
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Roadmap
Messages messages 
and messages again
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Yes there are only messages

  unary

  binary

  keywords

Composition: from left to 
right!
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Composition: from left to 
right!

69 class inspect

69 class superclass superclass inspect
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Unary> Binary> Keywords

Precedence
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2 + 3 squared

Precedence
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2 + 3 squared

> 2 + 9

Precedence
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2 + 3 squared

> 2 + 9

> 11

Precedence
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Color gray - Color white = Color black
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Color gray - Color white = Color black

> aColor = Color black
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Color gray - Color white = Color black

> aColor = Color black

> true
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2 raisedTo: 3 + 2
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2 raisedTo: 3 + 2

> 2 raisedTo: 5
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2 raisedTo: 3 + 2

> 2 raisedTo: 5

> 32
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1/3 + 2/3

	 	

No mathematical 
precedence
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1/3 + 2/3

>7/3 /3

	 	

No mathematical 
precedence
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Parenthesized takes precedence!

(Msg) > Unary> Binary> 
Keywords
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(0@0 extent: 100@100) bottomRight
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(0@0 extent: 100@100) bottomRight

> (aPoint extent: anotherPoint) bottomRight
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(0@0 extent: 100@100) bottomRight

> (aPoint extent: anotherPoint) bottomRight

> aRectangle bottomRight
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(0@0 extent: 100@100) bottomRight

> (aPoint extent: anotherPoint) bottomRight

> aRectangle bottomRight

> 100@100
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0@0 extent: 100@100 bottomRight
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0@0 extent: 100@100 bottomRight

> Message not understood

> 100 does not understand bottomRight
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3 + 2 * 10 

No mathematical 
precedence
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3 + 2 * 10

> 5 * 10 

No mathematical 
precedence
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3 + 2 * 10

> 5 * 10

> 50 

argh!

No mathematical 
precedence

Thursday, May 16, 13



3 + (2 * 10)

	 	

No mathematical 
precedence
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3 + (2 * 10)

> 3 + 20

	 	

No mathematical 
precedence
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3 + (2 * 10)

> 3 + 20

> 23

	 	

No mathematical 
precedence
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1/3 + 2/3	

> 7/3 /3

No mathematical 
precedence
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1/3 + 2/3	

> (7/3) /3

> 7/9

No mathematical 
precedence
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(1/3) + (2/3)	 	

No mathematical 
precedence
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(1/3) + (2/3)

> 1		

No mathematical 
precedence
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(Msg) > Unary > Binary > Keywords	 	

from left to right

No mathematical precedence

Only Messages
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(Msg) > Unary > Binary > Keywords	 	

from left to right

No mathematical precedence

Only Messages
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Roadmap
Fun with blocks
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Function definition

fct(x) = x * x + x 
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Function Application

fct (2) = 6

fct (20) = 420 
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Function definition

fct(x) = x * x + x 

|fct|

fct:= [:x | x * x + x].
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Function Application

fct (2) = 6

fct (20) = 420 

fct value: 2           

> 6

fct value: 20        
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Other examples

[2 + 3 + 4 + 5] value

[:x | x + 3 + 4 + 5 ] value: 2

[:x :y | x + y + 4 + 5] value: 2 value: 3
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Block

anonymous method

[ :variable1 :variable2 | 
		 | tmp |
		 expression1.
		 ...variable1 ...	 ]

value: ...
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Block
anonymous method

Really really cool!

Can be passed to methods, stored in instance 
variables

[ :variable1 :variable2 | 
		 | tmp |
		 expression1.
		 ...variable1 ...	 ]
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Roadmap
Fun with conditional
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Example

3 > 0 
    ifTrue:['positive'] 
    ifFalse:['negative'] 
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Example

3 > 0 
    ifTrue:['positive'] 
    ifFalse:['negative'] 

> ‘positive’
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Yes ifTrue:ifFalse: is a 
message!

Weather isRaining

     ifTrue: [self takeMyUmbrella]

     ifFalse: [self takeMySunglasses]

ifTrue:ifFalse is sent to an object: a boolean!
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Booleans

& | not

or: and: (lazy)

xor:

ifTrue:ifFalse:

ifFalse:ifTrue:

...
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Yes! ifTrue:ifFalse: is a message send to a Boolean.

But optimized by the compiler :)
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10 timesRepeat: [ Transcript show: 
'hello'; cr]
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10 timesRepeat: [ Transcript show: 
'hello'; cr]
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[x<y] whileTrue: [x := x + 3]
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aBlockTest whileTrue

aBlockTest whileFalse

aBlockTest whileTrue: aBlockBody

aBlockTest whileFalse: aBlockBody

anInteger timesRepeat: aBlockBody
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Confused with () and [] ?
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Only put [ ] when you do not the number of times 
something may be executed

     (x isBlue) ifTrue: [ x schroumph ]

     10 timesRepeat: [ self shout ]
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Conditions are messages sent to boolean

(x isBlue) ifTrue: [   ]
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Roadmap
Fun with loops
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1 to: 100 do: 

      [ :i | Transcript show: i ; space]
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1 to: 100 do: 

      [ :i | Transcript show: i ; space]

Thursday, May 16, 13



1 to: 100 by: 3 do: 

      [ :i | Transcript show: i ; space]

Thursday, May 16, 13



1 to: 100 by: 3 do: 

      [ :i | Transcript show: i ; space]
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So yes there are real loops in Smalltalk!

to:do: 

to:by:do:

are just messages send to integers
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So yes there are real loops in Smalltalk!

to:do: 

to:by:do:

are just messages send to integers
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Roadmap
Fun with iterators
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ArrayList<String> strings
                  = new ArrayList<String>();
   for(Person person: persons)
            strings.add(person.name()); 

strings := 
persons collect [:person | person name].
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#(2 -3 4 -35 4) collect: [ :each| each abs]
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#(2 -3 4 -35 4) collect: [ :each| each abs]

> #(2 3 4 35 4)
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#(15 10 19 68) collect: [:i | i odd ]
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#(15 10 19 68) collect: [:i | i odd ]

> #(true false true false)
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#(15 10 19 68) collect: [:i | i odd ]

We can also do it that way!

|result|
aCol :=  #( 2 -3 4 -35 4).
result := aCol species new: aCol size.
1 to: aCollection size do: 
	 [ :each | result at: each put: (aCol at: each) odd].
result
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 #(15 10 19 68) do:  

       [:i | Transcript show: i ; cr ]
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 #(15 10 19 68) do:  

       [:i | Transcript show: i ; cr ]
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#(1 2 3) 

    with:  #(10 20 30)

    do: [:x :y| Transcript show: (y ** x) ; cr ]
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#(1 2 3) 

    with:  #(10 20 30)

    do: [:x :y| Transcript show: (y ** x) ; cr ]
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How do: is implemented?
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How do: is implemented?

SequenceableCollection>>do: aBlock  
"Evaluate aBlock with each of the receiver's elements as the 
argument."

1 to: self size do: [:i | aBlock value: (self at: i)]
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#(15 10 19 68) select: [:i|i odd] 

#(15 10 19 68) reject: [:i|i odd] 

#(12 10 19 68 21) detect: [:i|i odd] 

#(12 10 12 68) detect: [:i|i odd] ifNone:[1]
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#(15 10 19 68) select: [:i|i odd] 

> #(15 19)

#(15 10 19 68) reject: [:i|i odd] 

#(12 10 19 68 21) detect: [:i|i odd] 

#(12 10 12 68) detect: [:i|i odd] ifNone:[1]
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#(15 10 19 68) select: [:i|i odd] 

> #(15 19)

#(15 10 19 68) reject: [:i|i odd] 

> #(10 68)	

#(12 10 19 68 21) detect: [:i|i odd] 

#(12 10 12 68) detect: [:i|i odd] ifNone:[1]
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#(15 10 19 68) select: [:i|i odd] 

> #(15 19)

#(15 10 19 68) reject: [:i|i odd] 

> #(10 68)	

#(12 10 19 68 21) detect: [:i|i odd] 

> 19

#(12 10 12 68) detect: [:i|i odd] ifNone:[1]

Thursday, May 16, 13



#(15 10 19 68) select: [:i|i odd] 

> #(15 19)

#(15 10 19 68) reject: [:i|i odd] 

> #(10 68)	

#(12 10 19 68 21) detect: [:i|i odd] 

> 19

#(12 10 12 68) detect: [:i|i odd] ifNone:[1]

> 1
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Iterators are your best friends

    compact

    nice abstraction

    Just messages sent to collections
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Iterators are your best friends

    compact

    nice abstraction

    Just messages sent to collections
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How do you define the method that does that?

      #() -> ‘’

      #(a) ->’a’

      #(a b c) -> ‘a, b, c’
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#(a b c)

do: [:each | Transcript show: each printString]

separatedBy: [Transcript show: ‘,’]
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#(a b c)

do: [:each | Transcript show: each printString]

separatedBy: [Transcript show: ‘,’]
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Roadmap
Cascading
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Messages Sequence
		 	 message1 .

		 	 message2 .

		 	 message3

	. is a separator, not a terminator

	

		 | macNode pcNode node1 printerNode |

		 macNode := Workstation withName: #mac.
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Multiple messages to an 
objects ;

To send multiple messages to the same object

	 	             Transcript show: 1 printString. 

	 	             Transcript cr

	 	

is equivalent to: 
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http://www.pharo.org
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