
Dynamic @ Work
S. Ducasse
www.pharo.org

http://www.pharo.org
http://www.pharo.org

TDD

Classes as objects

Stack as objects

Black magic

Topics

Transparent Object
Migration

Define a class Box

Create an instance of Box

Open an inspector

Change class Box

Instance gets migrated automatically

On the fly recompilation

When a method is not found in the debugger,

ask for the creation of a method on the fly

the system compiles on the spot a special method,
then reexecutes the method

it raises a shouldBeImplemented exception

then you can edit the method in the debugger

then proceed and the program continues to run

Classes are first class
objects

Structure (instance format)

Inheritance tree

Methods

Accessing structural
information

Dictionary instVarNames

Dictionary allInstVarNames #('tally' 'array')

Dictionary subclasses

{IdentityDictionary. WeakKeyDictionary.
WeakValueDictionary. PluggableDictionary.
LiteralDictionary. MethodDictionary. KeyedTree}

Dictionary allSubclasses

 a Set(MethodDictionary KeyedTree SystemDictionary
IdentityDictionary WeakIdentityKeyDictionary
LiteralDictionary WeakKeyToCollectionDictionary
WeakKeyDictionary WeakValueDictionary
PluggableDictionary)

Instances and pointers

Dictionary allInstances size

1294 :)

pointersTo
To get all the pointers to a given object :)

anObject pointersTo

returns all the pointers pointing to this
object

Execution Stack as an
Object

To be able to define exceptions from within the
language

Debugger support!

Advanced debugging

Continuation

thisContext

returns an object that represents the
method activation
can walk the stack

put self halt in the code to see it and
walk.

Powerful breakpoints?
Would be so good if we could say:
“Stop method bar only if it is invoked from
method testBar” i.e.
bar
 ...
 self haltIf: #testBar....
 ...

And we have the following
behavior...

foo
 self bar

Executing foo does not stop
while executing testBar should stop

haltIf: in 6 lines
Object>>haltIf: aSelector

| cntxt |
cntxt := thisContext.
[cntxt sender isNil] whileFalse: [
! cntxt := cntxt sender.

! (cntxt selector = aSelector)
 ifTrue: [Halt signal]]

!

Basis of Seaside

Powerful dynamic web framework
for dynamic web applications

www.seaside.st
book.seaside.st

http://www.seaside.st
http://www.seaside.st

Black magic... pointer
swapping

anObject become: anotherObject

All the pointers pointing to anObject
points now to anotherObject and the
inverse atomatically

	 | pt1 pt2 pt3 |
	 pt1 := 0@0.
	 pt2 := pt1.
	 pt3 := 100@100.
	 pt1 become: pt3.
	 self assert: pt2 = (100@100).
	 self assert: pt3 = (0@0).
	 self assert: pt1 = (100@100).

Changing the class of an
object

Class>>adoptInstance: anInstance

 "Change the class of anInstance to
me.returns the
 class rather than the
modified instance”

Obviously different from become:

| behavior model |
behavior := Behavior new.
behavior superclass: Model.
behavior setFormat: Model format.
model := Model new.
model primitiveChangeClassTo: behavior new.
behavior compile: 'thisIsATest ^ 2'.
self assert: model thisIsATest = 2.
self should: [Model new thisIsATest]
 raise: MessageNotUnderstood.

Powerful reflective system but

we will revisit it

Mirrors

Layered

AST node level annotation

Simple model

