
Crafting a little Embedded DSL

Chapter 1

Crafting a little Embedded
DSL

In this chapter we will develop a simple domain specific language (DSL) for
rolling dice. Players of games such as Dungeon and Dragons are familiar
with the DSL we will implement. An example of such DSL is 2 D20 + 1 D6
which means that we should roll two times a 20-faces dice and one time a 6
faces dice. This chapter will show how we can (1) simply reuse traditional
operator such as +, (2) develop an embedded DSL and (3) show a nice usage
of class extensions.

1.1 Getting started

Using the code browser, define a package named Dice or any name your like.

Defining the class Dice

Your code here

In the initialize category, define the method initialize as follows. It simply set
the default number of faces to 6.

Your code here

Crafting a little Embedded DSL

2 Crafting a little Embedded DSL

Creating a test

It is always empowering to verify that the code we write is always working
as we defining it. For this purpose we will create a unit test. Remember
unit testing was promoted by K. Beck first in Smalltalk. Nowadays this is a
common practice but this is always useful to remember our roots!

So we define the class DiceTest as a subclass of TestCase.

TestCase subclass: #DiceTest
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Dice'

DiceTest>>testInitializeIsOk

self shouldnt: [Dice new] raise: Error

1.2 Rolling a dice

To roll a dice we will use the method from Number atRandom which draws
randomly a number between one and the receiver. For example 10 at ran-
dom draws number between 1 to 10. Therefore we define the method roll as
follows.

Your code here

Now we can create an instance Dice new and send it the message roll and
get a result. Do Dice new inspect and then type in the bottom pane self roll. You
should get an inspector like the one shown in Figure 1.1. With it you can
interact with the dice by writing expression in the bottom pane.

Creating another test

We will define a test that verifies that rolling a new created dice with a de-
fault 6 faces only returns value comprised between 1 and 6. This is what the
following test method is actually specifying.

DiceTest>>testRolling

| d |
d := Dice new.
10 timesRepeat: [self assert: (d roll between: 1 and: 6)]

1.3 Instance creation interface. 3

Figure 1.1: Inspecting and interacting with a Dice.

Note that often it is better to define the test even before the code it tests.
Why? Because you can think about the API of your objects and a scenario
that illustrate their correct behavior. It helps you to program your solution.

1.3 Instance creation interface.

We would like to get a simpler way to create Dice. For example we want to
create a 20-faces dice as follows: Dice faces: 20. Let us define a test for it.

DiceTest>>testCreationIsOk

self shouldnt: [Dice faces: 20] raise: Error

We define the class method faces: as follows. It creates an instance then
send the message faces: to it and returns the instance.

Your code here

This method is strictly equivalent to the one below. The trick is that your-
self is a simple method defined on Object class. yourself returns the receiver of
a message and the use of ; sends the message to the receiver of the previous
message (here faces:), therefore yourself is sent to the object resulting from the
execution of the expression self new (which returns a new instance of the class
Dice).

Your code here

If you execute it will not work since we did not create yet the method
faces: this is now the time to define it.

4 Crafting a little Embedded DSL

Your code here

Now your tests should run.

So even if the class Dice could implement more behavior, we are ready to
implement a dice handle.

1.4 First specification of a dice handle

Let us define a new class DiceHandle that represents a dice handle. Here is
the API that we would like to offer for now. We create a new instance of the
handle then add some dice to it.

DiceHandle new
addDice: (Dice faces: 6);
addDice: (Dice faces: 10);
yourself

Of course we will define a test for this new class. We define the class
DiceHandleTest as follow.

Testing Handle Dice

TestCase subclass: #DiceHandleTest
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Dice'

We define a new test method as follows.

DiceHandleTest>>testCreationAdding

| handle |
handle := DiceHandle new

addDice: (Dice faces: 6);
addDice: (Dice faces: 10);
yourself.

self assert: handle diceNumber = 2.

In fact we can do it better and add a new test method that verifies that
we can even add two dices having the same number of faces.

DiceHandleTest>>testAddingTwiceTheSameDice

1.5 Improving programmer experience 5

| handle |
handle := DiceHandle new

addDice: (Dice faces: 6);
yourself.

self assert: handle diceNumber = 1.
handle addDice: (Dice faces: 6).
self assert: handle diceNumber = 2.

Defining the DiceHandle class

This class defines one instance variable to hold dices it contains.

Your code here

We simply initialize it so that its instance variable dice contains an Ordered-
Collection.

Your code here

Then we define a simple method to add a dice to the list of dices of the
handle.

Your code here

Now you can execute the code snippet and inspect it. You should get an
inspector as shown in Figure 1.2

DiceHandle new
addDice: (Dice faces: 6);
addDice: (Dice faces: 10);
yourself

Finally we should add the method diceNumber to the DiceHandle class to be
able to get the number of dice of the handle. We just returns the size of the
dices collection.

Your code here

Now you tests should run and this is good moment to save and publish
your code.

1.5 Improving programmer experience

Now when you open an inspector you cannot see well the dices that com-
pose the dice handle. Click on the dice instance variable and you will only
get a list of a Dice without further information.

6 Crafting a little Embedded DSL

Figure 1.2: Inspecting a Dice.

DiceHandle new
addDice: (Dice faces: 6);
addDice: (Dice faces: 10);
yourself

So we will enhance the printOn: method of the Dice class to provide more
information. Here we simply add the number of faces surrounded by paren-
thesis.

Your code here

Now in your inspector you can see effectively the number of faces a dice
handle has as shown by Figure 1.3 and it is now easier to check the dice
contained inside a handle (See Figure 1.4).

1.6 Rolling a dice handle

Now we can define the rolling of a handle of dice by simply summing the
dice rolls.

Your code here

Now we can send the message roll to a dice handle.

handle := DiceHandle new
addDice: (Dice faces: 6);
addDice: (Dice faces: 10);
yourself.

1.7 Role playing syntax 7

Figure 1.3: Dice details.

Figure 1.4: Dice Handle with more information.

handle roll

1.7 Role playing syntax

Now we are ready to offer a syntax following practice of role playing game,
i.e., using 2 D20 to create a handle of two 20 faces dice. For this purpose we
will define class extensions: we will define methods in the class Integer but
these methods will be only available when the package Dice will be loaded.

But first let us specify what we would like to obtain by writing a new
test in the class DiceHandleTest. Remember to always take any opportunity to

8 Crafting a little Embedded DSL

write tests. When we execute 2 D20 we should get a new handle composed
of two dice and can verify that. This is what the method testSimpleHandle is
doing.

DiceHandleTest>>testSimpleHandle

self assert: 2 D20 diceNumber = 2.

Verify that the test is not working! It is much more satisfactory to get a
test running when it was not working before. Now define the method D20
with a category name that is *Dice (if you named your package Dice). This
method simply creates a new dice handle, add the correct number of dice to
this handle and return it.

Your code here

Now you test should pass and this is probably a good moment to save
your work either by publishing your package to SmalltalkHub and to save
your image.

Now we could do the same for the default dice with different faces num-
ber: 4, 6, 10, and 20. But we should avoid duplicating logic and code. So
first we will introduce a new method D: and based on it we will define all
the others

Your code here

Your code here

Your code here

Your code here

Your code here

We have now a compact form to create dice and we are ready for the last
part: the addition of handles.

Handle’s Addition

Now we can simply support the addition of handles. But of course let’s write
a test first.

DiceHandleTest>>testSumming

| handle |
handle := 2 D20 + 3 D10.
self assert: handle diceNumber = 5.

1.8 Conclusion 9

We will define a method + on the HandleDice class. In other languages
this is often not possible or is based on operator overloading. In Pharo + is
just a message as any other, therefore we can define it on the classes we want.

Now we should ask ourself what is the semantics of adding two handles.
Should we modify the receiver of the expression or create a new one. We
preferred a more functional style and choose the create a third one.

The method + creates a new handle then add to it the dice of the receiver
and the one of the handle passed as argument to the message. Finally we
return it.

Your code here

Now we can execute the method (2 D20 + 1 D6) roll nicely and start playing
role playing games, of course.

1.8 Conclusion

This chapter illustrates how to create a small DSL based on the definition
of some domain classes (here Dice and DiceHandle) and the extension of core
class such Integer. It shows that in Pharo we can use usual operators to ex-
press natural models.

	Crafting a little Embedded DSL
	Getting started
	Rolling a dice
	Instance creation interface.
	First specification of a dice handle
	Improving programmer experience
	Rolling a dice handle
	Role playing syntax
	Conclusion

