Certification de programmes avec des effets calculatoires

Burak Ekici

Jean-Guillaume Dumas & Dominique Duval & Damien Pous

May 25, 2013 - Dinard, France
1 - Introduction & Motivation

• Burak Ekici, PhD Student at University Joseph Fourier (Grenoble I). Supervised by: Jean-Guillaume Dumas, Dominique Duval & Damien Pous.

• **Modeling the computational effects**, such as State, Exceptions, IO, Non-Determinism, of non-functional programming languages by using decorated logic [Dominguez&Duval’10]

• **Developing the model framework in the Coq proof management system to verify its internal validity & consistency.**
2 - States Effect Specification

- **Sets (Objects):**
 - N (values), U (unit : $\{\ast\}$)

- **Functions (Morphisms):**
 - $\text{id}_N : N \rightarrow N$, $\text{id}_U : U \rightarrow U$, $\langle \rangle_N : N \rightarrow U$
 - $\text{lookup}_i : U \rightarrow N$, $\text{update}_i : N \rightarrow U$

where $i \in \{X, Y, \ldots\}$ is a memory location identifier. [Dumas et al.’12]
Functions are Classified:

- **pure functions**: E.g. $\text{id}_N^{(0)} : N \to N$, $\text{id}_U^{(0)} : U \to U$, $\langle \rangle_N^{(0)} : N \to U$

- **accessors**: E.g. $\text{lookup}_i^{(1)} : U \to N$

- **modifiers**: E.g. $\text{update}_i^{(2)} : N \to U$

Equations are Classified:

- **strong equality** ($f \equiv g$): if f and g calculate the same result with the same effects on the state structure.

- **weak equality** ($f \sim g$): if f and g calculate the same result and might have different effects on the state structure.

E.g. $(\text{lookup}_i \circ \text{update}_i) \sim \text{id}_i$
Properties of the State Structure by Plotkin et al.

1. Annihilation lookup-update. $\forall i \in \text{Loc}, \ u_i \circ l_i \equiv \text{id}_U : U \rightarrow U$

2. Interaction lookup-lookup. $\forall i \in \text{Loc}, \ l_i \circ \langle \rangle_i \circ l_i \equiv l_i : U \rightarrow \mathbb{N}$

3. Interaction update-update. $\forall i \in \text{Loc}, \ u_i \circ \pi_2 \circ (u_i \times \text{id}_i) \equiv u_i \circ \pi_2 : \mathbb{N} \times \mathbb{N} \rightarrow U$

4. Interaction update-lookup. $\forall i \in \text{Loc}, \ l_i \circ u_i \sim \text{id}_i : \mathbb{N} \rightarrow \mathbb{N}$

5. Commutation lookup-lookup. $\forall i \neq j \in \text{Loc}, \ (\text{id}_i \times l_j) \circ l_i \equiv \text{perm}_{j,i} \circ (\text{id}_j \times l_i) \circ l_j : U \rightarrow \mathbb{N} \times \mathbb{N}$

6. Commutation update-update. $\forall i \neq j \in \text{Loc}, \ u_j \circ \pi_2 \circ (u_i \times \text{id}_j) \equiv u_i \circ \pi_1 \circ (\text{id}_i \times u_j) : \mathbb{N} \times \mathbb{N} \rightarrow U$

7. Commutation update-lookup. $\forall i \neq j \in \text{Loc}, \ l_j \circ u_i \circ \pi_1 \equiv \pi_2 \circ (u_i \times \text{id}_j) \circ (\text{id}_i \times l_j) : \mathbb{N} \times \mathbb{U} \rightarrow \mathbb{U}$
Proofs and Proof Verification Structure in Coq

To prove propositions by Plotkin et al.:

- 75 rules have been used.
 - 23 rules \Rightarrow Monadic Equational Logic.
 - 9 rules \Rightarrow Categorical Products.
 - 43 rules \Rightarrow Derived.

- ≈ 1100 lines of Coq Code have been written for proof verifications.

What is next?

- To model other effects (with combinations) and use Coq for related proof verifications.
References

Many thanks for your patience!

Questions?