Higher-Order Detection: Making Trace to Be Resilient to Obfuscation

Thanh Dinh Ta

Advisors: Jean-Yves Marion and Guillaume Bonfante

CARTE Team - INRIA Nancy

Saturday 25th May, 2013

Detection and Obfuscation (Co-)Evolution

- Detection techniques:
 - Syntactic based (classic, mostly used):

```
a.b.m<sub>1</sub>.m<sub>2</sub>.c.d
```

Behavior based (modern, sometimes used):

```
NtOpenFile.NtOpenKey.NtSetValueKey.NtWriteFile
```

Other supports: semantics template (for syntactic detection), abstract trace (for behavior detection), statistical data mining, etc.

Detection and Obfuscation (Co-)Evolution

- Obfuscation techniques:
 - ► (Poly,meta)-morphic:

```
a.m'_1.jmp m'_2.b.c.m'_2.d
```

(Cryptographic, virtual instruction)-packer:

messy data
$$\xrightarrow{unpack}$$
 a.b. $m_1.m_2.c.d$

Obfuscation is some potent transformation $t: \mathbb{P} \to \mathbb{P}$ that:

- ▶ preserve the I/O semantics: $\llbracket P \rrbracket \approx_{IO} \llbracket t(P) \rrbracket$
- but: $trace(P) \neq trace(t(P))$

for all program $P \in \mathbb{P}$.

Detection and Obfuscation (Co-)Evolution

They defeat each other, from time to time.

$$\mathtt{syntactic} \xrightarrow{\textit{defeated by}} \mathtt{polymorphic} \xrightarrow{\textit{defeated by}} \textit{behavior} \dots$$

Problem

Given a (well-know) malware P, let Q be an unknown program. How can we estimate that Q is just an version of P, i.e.

$$Q = t(P)$$

for some potent transformation t?.

Suppose that
$$Q = t(P)$$
 for some t , so

$$\llbracket P \rrbracket \approx_{IO} \llbracket Q \rrbracket$$

In other words, P and Q represent the same function but are implemented by different algorithms.

Some observations:

Let tr_1^P and tr_1^Q are corresponding traces of P and Q with some input i_1 , then normally:

$$tr_1^P \neq tr_1^Q$$

since P and Q are implemented by different algorithms.

▶ Given another input i_2 with $tr_2^P = tr_1^P$, then probably:

$$tr_2^Q = tr_1^Q$$

since P and Q represent the same function.

Main idea

We do not compare directly the traces of P and Q, but the trace-based equivalence relation \approx_P and \approx_Q on the set of inputs.

$$i \approx_P j \iff tr_i^P = tr_j^P$$

 $i \approx_Q j \iff tr_i^Q = tr_j^Q$

Categorically, any program P is represented uniquely by

where n_p is called normalization function and mono-morphism c_P is called choice function.

We say that Q is an obfuscated version of P if $n_Q = n_P$.

Extracting n_P is hard since the traces are sophisticated,

I have prepared a truly impressive figure for that but this page is too narrow to contain. Pierre de Fermat $(1637)^1$.

and that is my current works.

¹He would have said that if he saw the trace.

Your questions?

