Higher-Order Detection: Making Trace to Be Resilient to Obfuscation Thanh Dinh Ta Advisors: Jean-Yves Marion and Guillaume Bonfante CARTE Team - INRIA Nancy Saturday 25th May, 2013 ## Detection and Obfuscation (Co-)Evolution - Detection techniques: - Syntactic based (classic, mostly used): ``` a.b.m₁.m₂.c.d ``` Behavior based (modern, sometimes used): ``` NtOpenFile.NtOpenKey.NtSetValueKey.NtWriteFile ``` Other supports: semantics template (for syntactic detection), abstract trace (for behavior detection), statistical data mining, etc. # Detection and Obfuscation (Co-)Evolution - Obfuscation techniques: - ► (Poly,meta)-morphic: ``` a.m'_1.jmp m'_2.b.c.m'_2.d ``` (Cryptographic, virtual instruction)-packer: messy data $$\xrightarrow{unpack}$$ a.b. $m_1.m_2.c.d$ Obfuscation is some potent transformation $t: \mathbb{P} \to \mathbb{P}$ that: - ▶ preserve the I/O semantics: $\llbracket P \rrbracket \approx_{IO} \llbracket t(P) \rrbracket$ - but: $trace(P) \neq trace(t(P))$ for all program $P \in \mathbb{P}$. ## Detection and Obfuscation (Co-)Evolution They defeat each other, from time to time. $$\mathtt{syntactic} \xrightarrow{\textit{defeated by}} \mathtt{polymorphic} \xrightarrow{\textit{defeated by}} \textit{behavior} \dots$$ ### **Problem** Given a (well-know) malware P, let Q be an unknown program. How can we estimate that Q is just an version of P, i.e. $$Q = t(P)$$ for some potent transformation t?. Suppose that $$Q = t(P)$$ for some t , so $$\llbracket P \rrbracket \approx_{IO} \llbracket Q \rrbracket$$ In other words, P and Q represent the same function but are implemented by different algorithms. #### Some observations: Let tr_1^P and tr_1^Q are corresponding traces of P and Q with some input i_1 , then normally: $$tr_1^P \neq tr_1^Q$$ since P and Q are implemented by different algorithms. ▶ Given another input i_2 with $tr_2^P = tr_1^P$, then probably: $$tr_2^Q = tr_1^Q$$ since P and Q represent the same function. #### Main idea We do not compare directly the traces of P and Q, but the trace-based equivalence relation \approx_P and \approx_Q on the set of inputs. $$i \approx_P j \iff tr_i^P = tr_j^P$$ $i \approx_Q j \iff tr_i^Q = tr_j^Q$ Categorically, any program P is represented uniquely by where n_p is called normalization function and mono-morphism c_P is called choice function. We say that Q is an obfuscated version of P if $n_Q = n_P$. Extracting n_P is hard since the traces are sophisticated, I have prepared a truly impressive figure for that but this page is too narrow to contain. Pierre de Fermat $(1637)^1$. and that is my current works. ¹He would have said that if he saw the trace. ### Your questions?