
Verified Static Analysis of Low-Level Languages

Vincent Laporte

Advisors: Sandrine Blazy and David Pichardie

Université Rennes 1 – Celtique team

ÉJCP — 2013-05-25



Motivation

Possible outcomes when running a program

▶ result

▶ error message
▶ segmentation fault
▶ machine gets compromized
▶ machine catches fire

Problem
Can we decide, without running the program whether the behavior
will be safe or not?
Let’s use static analysis.

1 / 5



Motivation

Possible outcomes when running a program

▶ result
▶ error message

▶ segmentation fault
▶ machine gets compromized
▶ machine catches fire

Problem
Can we decide, without running the program whether the behavior
will be safe or not?
Let’s use static analysis.

1 / 5



Motivation

Possible outcomes when running a program

▶ result
▶ error message
▶ segmentation fault

▶ machine gets compromized
▶ machine catches fire

Problem
Can we decide, without running the program whether the behavior
will be safe or not?
Let’s use static analysis.

1 / 5



Motivation

Possible outcomes when running a program

▶ result
▶ error message
▶ segmentation fault
▶ machine gets compromized

▶ machine catches fire

Problem
Can we decide, without running the program whether the behavior
will be safe or not?
Let’s use static analysis.

1 / 5



Motivation

Possible outcomes when running a program

▶ result
▶ error message
▶ segmentation fault
▶ machine gets compromized
▶ machine catches fire

Problem
Can we decide, without running the program whether the behavior
will be safe or not?
Let’s use static analysis.

1 / 5



Motivation

Possible outcomes when running a program

▶ result
▶ error message
▶ segmentation fault
▶ machine gets compromized
▶ machine catches fire

Problem
Can we decide, without running the program whether the behavior
will be safe or not?
Let’s use static analysis.

1 / 5



Motivation (cont.)

Possible outcomes when running a static analyzer

▶ “don’t know” → seek the bug

▶ “safe” → run the program → witness a safe behavior
▶ “safe” → run the program → witness an unsafe behavior

Problem
How to trust a static analyzer?
Let’s formally prove its correctness.

2 / 5



Motivation (cont.)

Possible outcomes when running a static analyzer

▶ “don’t know” → seek the bug
▶ “safe” → run the program → witness a safe behavior

▶ “safe” → run the program → witness an unsafe behavior

Problem
How to trust a static analyzer?
Let’s formally prove its correctness.

2 / 5



Motivation (cont.)

Possible outcomes when running a static analyzer

▶ “don’t know” → seek the bug
▶ “safe” → run the program → witness a safe behavior
▶ “safe” → run the program → witness an unsafe behavior

Problem
How to trust a static analyzer?
Let’s formally prove its correctness.

2 / 5



Motivation (cont.)

Possible outcomes when running a static analyzer

▶ “don’t know” → seek the bug
▶ “safe” → run the program → witness a safe behavior
▶ “safe” → run the program → witness an unsafe behavior

Problem
How to trust a static analyzer?
Let’s formally prove its correctness.

2 / 5



What is “safety”?
C Programs Have “Undefined Behaviors”

▶ out-of-bounds array access
▶ signed integer overflow
▶ null pointer dereference
▶ read from not initialized memory
▶ …

Safe Binary Program?
Execution stays within a given (code) segment.
Requires the ability to predict all jump targets.

Both cases require value analysis

3 / 5



What is “safety”?
C Programs Have “Undefined Behaviors”

▶ out-of-bounds array access
▶ signed integer overflow
▶ null pointer dereference
▶ read from not initialized memory
▶ …

Safe Binary Program?
Execution stays within a given (code) segment.
Requires the ability to predict all jump targets.

Both cases require value analysis

3 / 5



What is “safety”?
C Programs Have “Undefined Behaviors”

▶ out-of-bounds array access
▶ signed integer overflow
▶ null pointer dereference
▶ read from not initialized memory
▶ …

Safe Binary Program?
Execution stays within a given (code) segment.
Requires the ability to predict all jump targets.

Both cases require value analysis

3 / 5



Architecture of a Static Analyzer

Programs

▶ Abstract Interpreter
▶ Numerical Abstract Domains
▶ Abstract Memory Model

Proofs

▶ Semantics of the analyzed language (CompCert)
▶ Prove the abstract domains w.r.t. machine integers/floats
▶ Prove the memory model w.r.t. the language one
▶ Don’t prove the interpreter (too hard): program and prove a

validator instead

4 / 5



Conclusion

So Far
Static analyzers of

▶ an intermediate language of CompCert
▶ a toy binary language

Future Work

▶ Improve precision of the memory model
▶ Handle realistic binary (x86)

5 / 5


